CONCEALED WEAPON DETECTION USING DIGITAL IMAGE PROCESSING

Abstract:

We have recently witnessed the series of bomb blasts in Mumbai. Bombs went of in buses
and underground stations. And killed many and left many injured. On July 13t seven explosions
took place with in one hour. And left the world in shell shock and the Indians in terror.

This situation is not limited to Mumbai but it can happen anywhere and any time in the
world. People think bomb blasts cant be predicted before handled. Here we show you the
technology, which predicts the suicide bombers and explosion of weapons through IMAGE
PROCESSING FOR CONCLEAD WEAPON DETECTION.

The detection of weapons concealed underneath a person's clothing is very much
important to the improvement of the security of the general public as well as the safety of public
assets like airports, buildings, and railway stations etc. Manual screening procedures for detecting
concealed weapons such as handguns, knives, and explosives are common in controlled access
settings like airports, entrances to sensitive buildings and public events. It is desirable sometimes
to be able to detect concealed weapons from a standoff distance, especially when it is impossible
to arrange the flow of people through a controlled procedure

In the present paper we describe the concepts of the technology ‘CONCEALEAD WEAPON
DETECTION' the sensor improvements, how the imaging takes place and the challenges. And we
also describe techniques for simultaneous noise suppression, object enhancement of video data
and show some mathematical results.
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Conclusion: Imaging techniques based on a combination of sensor technologies and
processing will potentially play a key role in addressing the concealed weapon detection problem.
In this Paper, we first briefly reviewed the sensor technologies being investigated for the CWD
application. Of the various methods being investigated, passive MMW imaging sensors Offer the
best near-term potential for providing a noninvasive method of observing metallic and plastic
objects concealed underneath common clothing. Recent advances in MMW sensor technology
have led to video-rate (30 frames/s) MMW cameras. However, MMW cameras alone cannot
provide useful information about the detail and location of the individual being monitored. To
enhance the practical values of passive MMW cameras, sensor fusion approaches using MMW
and IR, or MMW and EO cameras are being described. By integrating the complementary
information from different sensars, a more effective CWD system is expected. In the second part of
this paper, we provided a survey of the image processing techniques being developed to achieve
this goal. Specifically, topics such as MMW image/video enhancement, filtering, registration, fusion,
extraction, description, and recognition were discussed. A preliminary study on the performance of
several shape descriptors that show promising results has also been reported in this paper.



Introduction:
Till now the detection of concealed weapons is done by manual screening procedures. To control
the explosives in some places like airports, sensitive buildings, famous constructions etc. But these
manual screening procedures are not giving satisfactory results, because this type of manual
screenings procedures screens the person when the person is near the screening machine and
also some times it gives wrong alarm indications so we are need of a technology that almost
detects the weapon by scanning. This can be achieved by imaging for concealed weapons.

The goal is the eventual deployment of automatic detection and recognition of concealed
weapons. It is a technological challenge that requires innovative solutions in sensor technologies
and image processing.

The problem also presents challenges in the legal arena; a number of sensors based
on different phenomenology as well as image processing support are being developed to observe
objects underneath people’s clothing.

Imaging Sensors:

These imaging sensors developed for CWD applications depending on their portability, proximity
and whether they use active or passive illuminations. The different types of imaging sensors for
CWD based are shown in following table.

LInfrared Imager:

Infrared imagers utilize the temperature distribution information of the target to form an
image. Normally they are used for a variety of night-vision applications, such as viewing vehicles
and people. The underlying theory is that the infrared radiation emitted by the human body is
absorbed by clothing and then re-emitted by it. As a result, infrared radiation can be used to show
the image of a concealed weapon only when the clothing is tight, thin, and stationary. For normally
loose clothing, the emitted infrared radiation will be spread over a larger clothing area, thus
decreasing the ability to image a weapon.

2. P M W Imaging Sensors:
First Generation:

Passive milimeter wave (MMW) sensors measure the apparent temperature through the
energy that is emitted or reflected by sources. The output of the sensors is a function of the
emissive of the objects in the MMW spectrum as measured by the receiver. Clothing penetration
for concealed weapon detection is made possible by MMW sensors due to the low emissive and
high reflectivity of objects like metallic guns. In early 1995, the MMW data were obtained by means
of scans using a single detector that
Took up to 90 minutes to generate one image.

Following figure1 (a) shows a visual image of a person wearing a heavy sweater that
conceals two guns made with metal and ceramics. The corresponding 94-GHz radiometric image
figure1 (b) was obtained by scanning a single detector across the object plane using a mechanical
scanner. The radiometric image clearly shows both firearms.

Figu: _ \! MMW image of a person concealing 2 guns
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Recent advances in MMW sensor technology have led to video-rate (30 frames/s) MMW
cameras .One such camera is the pupilplane array from Terex Enterprises. It is
A 94-GHz radiometric pupil-plane imaging system that employs frequency scanning to achieve
vertical resolution and uses an array of 32 individual wave-guide antennas for
Horizontal resolution. This system collects up to 30 frames/s of MMW data. Following figure shows
the visible and second-generation MMW images of an individual
Hiding a gun underneath his jacket. It is clear from the figures 1(b), 2(b) that the image quality of
the camera is degraded.

FIGURE 2a) visual image 2b) second-generation image of a person concealing a handgun beneath
a jacket.

Cwd Through Image Fusion:

By fusing passive MMW image data and its corresponding infrared (IR) or electro-optical (EO)
image, more complete information can be obtained; the information can then be utilized to facilitate
concealed weapon detection. Fusion of an IR image revealing a concealed weapon and its
corresponding MMW image has been shown to facilitate extraction of the concealed weapon. This
is illustrated in the example given in following figure 3a) Shows an image taken from a regular CCD
camera, and Figure3b) shows a corresponding MMW image. If either one of these two images
alone is presented to a human operator, it is difficult to recognize the weapon concealed
underneath the rightmost person’s clothing. If a fused image as shown in Figure 3c) is presented, a
human operator is able to respond with higher accuracy. This demonstrates the benefit of image
fusion for the CWD application, which integrates complementary information

From multiple types of sensors.




Imaging Processing Architecture:

Outpat to a

Hurnan Operator
— [ Automatic
Qutpul

Inputg Preprocessing -y Weapen
—

| Detection
|

Enhancement
andiot
Dencising

Feature
Extaction/
Description

Registration
and
Fusion

FIGURE 4: An Imaging Processing Architecture Overview For CWD

An image processing architecture for CWD is shown in Figure 4.The input can be multi
sensor (i.e., MMW + IR, MMW + EO, or MMW + IR + EO) data or only the MMW data. In the latter
case, the blocks showing registration and fusion can be removed from Figure 4. The output can
take several forms. It can be as simple as a processed imagelvideo sequence displayed on a
screen; a cued display where potential concealed weapon types and locations are highlighted with
associated confidence measures; a “yes,” “no,” or ‘maybe’ indicator; or a combination of the
above. The image processing procedures that have been investigated for CWD applications range
from simple denoising to automatic pattern recognition.

Wavelet Approachs For Pre Processing:

Before an image or video sequence is presented to a human observer for operator-
assisted weapon detection or fed into an automatic weapon detection algorithm, it is desirable to
preprocess the images or video data to maximize their exploitation. The preprocessing steps
considered in this section include enhancement and filtering for the removal of shadows, wrinkles,
and other artifacts. When more than one sensor is used, preprocessing Must also include
registration and fusion procedures.
1}image Denoising & Enhancement Through Wavelets:

Many techniques have been developed to improve the guality of MMW images in this
section, we describe a technigue for simultaneous noise suppression and object enhancement of
passive MMW video data and show some mathematical results.

Denoising of the video sequences can be achieved temporally or spatially. First, temporal
denoising is achieved by motion compensated filtering, which estimates the motion trajectory of
each pixel and then conducts a 1-D filtering along the trajectory.



This reduces the blurring effect that occurs when temporal filtering is performed without regard to
object motion between frames. The motion trajectory of a pixel can be estimated by various
algorithms such as optical flow methods, block-based methods, and

Bayesian methods. If the motion in an image sequence is not abrupt, we can restrict the search to
a small region in the subsequent frames for the motion trajectory. For additional denoising and
object enhancement, the technique employs a wavelet transform

Methed that is based on multi scale edge representation.

The approach provides more flexibility and selectivity with less blurring. Furthermore, It offers a
way to enhance objects in low-contrast images. Let ?1 (x, y} and 72 (x, y) be wavelets for x and y
directions of an image, respectively. The dyadic wavelet transform of a function f (x, y) at (x, y} is
defined as

Where * represents the convolution operator, | is a wavelet decomposition level, and

, 1 /x
vhix = yi,rf(ﬂ ) k=12 ?)

9J

(W) flo, ), W2 £, )
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The multiscale edge representation G2 j( f ) denotes a collection of local maxima of the magnitude
72 j f(x, y) at a point (xi, yij along the direction 72 j f(x, y). The wavelet transform based denoising



and enhancement technique is achieved by manipulating G2 j(f ). By suppressing the noisy edges
below a predefined threshold in the finer scales, noise can be reduced while most of the true edges
are preserved. To avoid removing

True edges accidentally in lower scales, where true edges generally become smaller, variable
thresholds can be applied depending on scales. Enhancement of the image contrast is performed
by stretching the multiscale edges in G2 j{ f). A denoised and

Enhanced image is reconstructed from the modified edges by the inverse wavelet transform; above
Figure shows the results of this technique. In above figure 5(a), which shows a frame taken from
the sample video sequence, the concealed gun does not show clearly

Because of noise and low contrast. The images in Figure 5(b) show the denoised frame by motion-
compensated filtering. The frame was then spatially denoised and enhanced by the wavelet
transform methods. Four decomposition levels were used and edges in

The fine scales were detected using the magnitude and angles of the gradient of the multiscale
edge representation. The threshold for denoising was 15% of the maximum gradient at each scale.
Figure 5{(c) shows the final results of the contrast enhanced and

Demised frames. Note that the image of the handgun on the chest of the subject is more apparent
in the enhanced frame than it is in the original frame. However, spurious features such as glint are
also enhanced; higher-level procedures such as pattern

Recognition has to be used to discard these undesirable features.

li} Clutter Filtering:

Clutter filtering is used to remove unwanted details (shadows, wrinkles, imaging artifacts, etc.) that
are not needed in the final image for human observation, and can adversely affect the performance
of the automatic recognition stage. This helps improve the recognition performance, either
operator-assisted or automatic. For this purpose, morphological filters have been employed.
Examples of the use of morphological filtering for noise removal are provided through the complete
CWD example given in Figure. A complete description of the example is given in a later section.

lii} Registration Of Multi Sensor Images:

As indicated earlier, making use of multiple sensors may increase the efficacy of a CWD
system. The first step toward image fusion is a precise alignment of images (ie., image
registration).

Very little has been reported on the registration problem for the CWD application. Here, we
describe a registration approach for images taken at the same time from different but
Nearly collocated (adjacenand parallel} sensors based on the maximization of mutual information
(MMI) criterion. MMI states that two images are registered when their mutual information (MI)
reaches its maximum value. This can be expressed mathematically as the following:

o = arg opt(1(F), R(T,(2)))) )

Where F and R are the images to be registered. F is referred to as the floating image, whose pixel
coordinates { “x} are to be mapped to new coordinates on the reference image R The reference
image Ris to be resampled according to the positions defined by

The new coordinates Ta("x), where T denotes the transformation model, and the dependence of T
on its associated parameters a is indicated by the use of notation Ta. is the MI similarity measure
calculated over the region of overlap of the two images and

Can be calculated through the joint histogram of the two images the above criterion says that the
two images F and R are registered through Ta* when a* globally optimizes the MI measure, a two-
stage registration algorithm was developed



For the registration of IR images and the corresponding MMW images of the first generation. At the
first stage, two human silhouette extraction algorithms were developed, followed by a binary
correlation to coarsely register the two images. The purpose was to provide an inttial search point
close to the final solution

For the second stage of the registration algorithm based on the MMI criterion. In this manner, any
local optimizer can be employed to maximize the MI measure.

One registration result obtained by this approach is illustrated through the example

Given in Figure 6.
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FIGURE 6: A CWD EXAMPLE

1v) Image Decomposition:

The most straightforward approach to image fusion is to take the average of the source
images, but this can produce undesirable results such as a decrease in contrast. Many of the
advanced image fusion methods involve multi resolution image decomposition based on the
wavelet transform. First, an image pyramid is constructed for each source image by applying the
wavelet transform to the source images. This transform domain representation emphasizes
important details of the source images at different scales, which is useful for choosing the best
fusion rules. Then, using a feature
Selection rule, a fused pyramid is formed for the composite image from the pyramid coefficients of
the source images. The simplest feature selection rule is choosing the maximum of the two
corresponding tfransform values. This allows the
Integration of details into one image from two or more images. Finally, the composite image is
obtained by taking an inverse pyramid transform of the composite wavelet representation. The
process can be applied to fusion of multiple source imagery. This
Type of method has been used to fuse IR and MMW images for CWD application [7]. The first
fusion example for CWD application is given in Figure 7. Two IR images taken from separate IR
cameras from different viewing angles are considered in this case. The advantage of image fusion
for this case is clear since we can observe a complete gun shape only in the fused image. The
second fusion example, fusion of IR and MMW images, is provided in Figure



FIGURE 7: (a) and (b) are original | R images (c) is fused image

Automatic Weapon Detection:

After preprocessing, the imagesivideo sequences can be displayed for operator-assisted
weapon detection or fed into a weapon detection module for automated weapon detection. Toward
this aim, several steps are required, including object extraction, shape description, and weapon
recognition.

Segmentation For Object Extraction:

Object extraction is an important step towards automatic recognition of a weapon, regardless of
whether or not the image fusion step is involved. It has been successfully used to extract the gun
shape from the fused IR and MMW images. This could not be achieved using the original images
alone. One segmented result from the fused IR and MMW image is shown in Figure 6. Another
segmentation procedure applied successfully to MMW video sequences for CWD application is
called the Slamani mapping Procedure (SMP). A block diagram of this procedure is given in Figure
8. The procedure

computes multiple important thresholds of the image data in the automatic threshold
computation (ATC) stage for 1) regions with distinguishable intensity levels, and 2) regions with
close intensity levels. Regions with distinguishable intensity levels have multi modal histograms,
whereas regions with close intensity levels have overlapping histograms. The thresholds from both
cases are fused to form the set of important thresheolds in the scene. At the output of the ATC
stage, the scene is quantized for each threshold value to obtain data above and below. Adaptive
filtering is then used to perform homogeneous pixel grouping in order to obtain “objects” present at
each threshold level. The resulting scene is referred to as a component image. Note that when the
component images obtained for all thresholds are added together, they form a composite image
that displays objects with different colors. Figure 9 shows the original scene and its corresponding
composite image. Note that the weapon appears as a single object in the composite image.
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1)Shape Description:

A) Moments:
It defines six shape descriptors based on the second- and third-order normalized moments that are
translation, scale, and rotation invariant. The definitions of these six descriptors are provided

below:
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Where ?p, q = (up.q)/u(p+g+2)2 0,0 is the normalized central moment with up,q = _(x-  x)p(y-
~ y)gbeing the central

Moment. The performance of these six moment-based shape descriptors are examined in the next
section. In addition to the moments of images, moments of region boundaries can be also defined.
Let the coordinates of the M contour pixels of the object be described by an ordered set (x(i}, y(i)),
i=1,2,..., N. The Euclidean distance between the centroid, (%, y) and the ordered sequence
of the contour pixels of the shape is denoted as d(i), i=1,2, ..., N This set forms a single-valued
1D unique representation

Of the contour. Based on the set dfi ), the pth moment is defined as
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[zing these moment definitions, a meas-
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shapes is defined by

(M L4 ."-'l_,f.;..l-':f
_ M) WMz (15)
m

F

™

Mote that the value is dimensionless as
well as rotation, scale, and translation
imvariant.

b) CIRCULARITY:

A dimensionless measure of shape compactness or circularity, C, is defined as

C=P2/A (16)
Where P is the length of the region perimeter and A is the area of the region. Compactness
provides a measure of contour complexity versus area enclosed. In addition, it measures how
circular or elongated the object is. A shape with a rough contour including several incursions will
have a high value of C, indicating low compactness. It is clear that this quantity is independent of
rotation, scale, and translation
Mathematical Analysis:
To evaluate the performance of each individual shape descriptor, a test is designed based on the
available MMW video sequence. First, a set of 30 frames was selected from a
Sequence of MMW data. Objects from each frame were extracted using the SMP described
previously. There were 166 total objects extracted, among which 28 were weapons, by observing
the original video sequence. To determine the performance of
Each shape descriptor, the probability of detection (PD) versus probability of
false alarm (PFA) is plotted by choosing different thresholds

for each of the shape descriptors. :
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FIGURE 10(A) PD Versus PFA For C (0), (B) For SD (7) And SD (8), (C) SD (1) To
SD (6)



Figure 10(a) shows that when all the weapons are detected (PD = 1.00), the PFA is about 0.13.
Figure 10(b) shows the results obtained when the FD-based measures SD7 and SD8

Are used. It shows that the sum of the magnitude of the Fds results in better performance with less
PFA than using the magnitude of the combination of the positive and corresponding negative
phases of the FDs. Finally, Figure 10(c) shows the results of using moment-based shape
measures to the set of objects. The plots of PD versus PFA show that SD1 and $D2, which are
based on second-order moments, are the worst behaved ones; whereas S03 through 5086, based
on third order moments, are the best behaved ones and result in small values of PFA while
generating very close results.

Challenges:

There are several challenges ahead. One critical issue is the challenge of performing
detection at a distance with high probability of detection and low probability of false alarm. Yet
another difficulty to be surmounted is forging portable multisensor instruments. Also, detection
systems go hand in hand with subsequent response by the operator, and system development
should take into account the overall context of deployment.



