AI-Enabled Safe Locker with BrainChip Project Build a smart locker system that opens only when both the user’s face and voice command match authorized patterns — all processed using low-power neuromorphic AI. This article provides brief information on an AI-enabled safe locker with BrainChip, features, etc. AI-Enabled Safe Locker with BrainChip Features Face recognition (Vision AI using SNN) Wake word detection (Audio SNN) Servo-controlled locking mechanism Local, low-latency inference (no cloud) On-chip learning (for adding new users) Components Required Component Description BrainChip Akida USB Dev Kit Neuromorphic processor (main AI engine) USB Microphone Audio input (wake-word detection) USB Camera Visual input (face recognition) Servo Motor (SG90/996R) Physical lock control Raspberry Pi 4 / Jetson Nano Host controller with Linux (Ubuntu 20.04) Breadboard + jumper wires To connect the servo motor Power Source USB power bank or adapter Software Setup 1. Install Dependencies sudo apt update. sudo apt install python3-pip libatlas-base-dev. pip3 install akida speechrecognition opencv-python numpy pyserial. Install Akida SDK: Download the BrainChip Akida SDK from the official site. Follow their instructions to install the Python SDK and runtime. AI-Enabled Safe Locker Project Architecture AI-Enabled Safe Locker Step-by-Step Implementation Step 1: Data Collection & Preprocessing a. Face Dataset (Images) Collect 20–30 frontal face images per authorized person using OpenCV: import cv2 cap = cv2.VideoCapture(0) for i in range(30): ret, frame = cap.read() cv2.imwrite(f”user_face_{i}.jpg”, frame) cap.release() b.Voice Samples (Wake Word) Record your custom phrase (e.g., “Unlock Akida”) using PyAudio or Audacity. Step 2 : Train SNN Models with Akida a. Convert Face Classifier to SNN Use MobileNet or a custom CNN for feature extraction and convert to SNN using akida.Model. from akida import Model model = Model(“cnn_model.h5”) model.quantize() model_to_akida = model.convert() model_to_akida.save(“face_model.akd”) b. Convert Wake Word Classifier Use MFCC preprocessing → CNN → SNN Convert the audio classifier to an Akida model using the Akida tools. Step 3: Load Models and Infer from akida import AkidaModel face_model = AkidaModel(“face_model.akd”) audio_model = AkidaModel(“wake_model.akd”) Audio Inference (Wake Word) def is_wake_word(audio): prediction = audio_model.predict(audio) return prediction == “unlock_akida” Face Inference (Real-Time Face Match) def is_authorized_face(frame): face = detect_and_crop_face(frame) prediction = face_model.predict(face) return prediction == “authorized_user” Control the Servo Lock import RPi.GPIO as GPIO import time servo_pin = 17 GPIO.setmode(GPIO.BCM) GPIO.setup(servo_pin, GPIO.OUT) servo = GPIO.PWM(servo_pin, 50) servo.start(0) def open_locker(): servo.ChangeDutyCycle(7.5) # Adjust as per lock time.sleep(1) servo.ChangeDutyCycle(0) def close_locker(): servo.ChangeDutyCycle(2.5) time.sleep(1) servo.ChangeDutyCycle(0) Step 5: Integration Logic import cv2 import speech_recognition as sr cam = cv2.VideoCapture(0) while True: # Wake word check audio = record_audio_sample() if not is_wake_word(audio): continue # Face check ret, frame = cam.read() if is_authorized_face(frame): open_locker() print(“Locker opened!”) else: print(“Face not recognized.”) Testing and Validation Add a new user using Brainchip Akida’s on-chip learning API. Try unlocking with the wrong voice or face → the system should deny access. Log each attempt (success/failure) for analytics. Try Implementing the above project and let us know your results.. Share This Post: Facebook Twitter Google+ LinkedIn Pinterest Post navigation ‹ Previous IBM TrueNorth : Features, Specifications. Architecture, Working, Differences & Its Applications Related Content A Comparative Analysis of NVIDIA Jetson Nano and Google Coral : Unleashing the Power of Edge AI Raspberry Pi 4 Model B : PinOut, Features, Specifications, Interfacing, Differences & Its Applications ESP32-C3 Development Board : PinOut, Features, Specifications, Interfacing & Its Applications Hopper Architecture Explained : From SMs to DPX Instructions